
Interpretation of dynamic scattering 
experiments on ternary polymer mixtures 

M. Tombakoglu and A. Z. Akcasu* 
Department of Nuclear Engineering, The University of Michigan, 
Ann Arbor, MI 48109, USA 
(Received 11 February 1991; revised 25 April 1991; accepted 28 April 1991 ) 

The dynamics of a ternary polymer mixture consisting of either homopolymers A and B, or diblock 
copolymers A-B, in a matrix of homopolymers C, is studied using the random phase approximation and 
assuming incompressibility. The relaxation frequencies and the amplitudes of the modes in dynamic 
scattering on such a mixture have been calculated as a function of the wave number q. In addition, the 
first cumulant of the dynamic scattering function of a labelled component is obtained in all q regions 
including the high q region where the segmental diffusion dominates the relaxation of the scattering function. 
The particular mixture consisting of A-B diblock copolymers in a matrix of homopolymers A, studied 
recently by St/ihn and Rennie, is analysed in detail, by calculating the first cumulant in the entire q region. 
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INTRODUCTION 

The dynamics of ternary polymer mixtures has been the 
subject of several experimental and theoretical studies in 
recent years. On the experimental side, Nemota et  al.  ~ 

studied a binary mixture of polystyrene fractions in 
benzene in the semidilute regime with dynamic light 
scattering. Borsali et  al.  z investigated the dynamics 
of a mixture consisting of polystyrene/poly(methyl 
methacrylate)/toluene also by quasielastic light scattering 
in the semidilute regime. More recently Brown et  al.  3 

reported the results of dynamic light scattering from 
various homopolymer species in solutions. On the other 
hand Stiihn and Rennie 4 studied the segmental dynamics 
of styrene-isoprene diblock copolymer in deuterated 
polyisoprene matrix with spin-echo neutron scattering. 

On the theoretical side, the general theory of multi- 
component systems was formulated by Akcasu e t  al.  5 in 
1984 using linear response theory. They showed that in 
two-component polymer solutions, the dynamic scattering 
function is expressed as a superposition of two exponential 
modes (bimodal relaxation), and obtained the exponents 
and amplitudes of modes explicitly, from which they 
calculated the apparent diffusion coefficient for the 
mixture as a function of concentration in the dilute 
regime. They compared their theoretical predictions to 
the experimental results on a solution consisting of 
polystyrene molecules with different molecular weights 
in cyclohexane at the 0 point. The same formalism was 
used by Akcasu e t  al.  6 to study the dynamics of 
polyelectrolyte solutions. In 1986 Akcasu e t  al .  7 investi- 
gated the dynamics of binary homopolymer blends and 
copolymer melts using Random Phase Approximation 
(RPA), and calculated the first cumulant of the dynamic 
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scattering function as a function of wavelength. In 1987 
Benmouna e t  al.  8 rederived the earlier results in reference 
5, using the linear response theory to calculate the 
mobilities without including hydrodynamic interactions, 
and the RPA to calculate the static structure factors, and 
then analysed the experiments by Nemota e t  al.  1. Also, 
in 1987 Benmouna e t  al.  9 studied the dynamics of 
copolymers in solvent. Foley and Cohen 1°, used the 
Flory-Huggins model to describe the dynamics of 
concentration fluctuations and spinodal decomposition 
for the ternary system of two polymers and solvent. Stiihn 
and Rennie 4 extended the results of Akcasu e t  al.  7 for 
diblock copolymer melts, by including the effect of a 
matrix consisting of one of the species in the copolymers, 
in order to interpret their spin-echo experiments. More 
recently Akcasu and Tombakoglu 11 have developed a 
general theory of multicomponent incompressible polymer 
mixtures within the framework of RPA, and obtained 
general expressions for the dynamic scattering function 
and its first cumulant in the interacting system in terms 
of the bare system parameters. 

The purpose of this paper is to present a theoretical 
interpretation of dynamic scattering experiments on 
ternary systems consisting of three polymer species A, B 
and C by explicitly calculating the decay constants and 
amplitudes of the exponential modes, as a special case 
of the general results we obtained earlier ~ 1. Since in some 
experiments, such as the one by StiJhn and Rennie ¢, the 
segmental diffusion is investigated through the first 
cumulant, we also present the calculation of the first 
cumulant for all values of wave number q as a function 
of the interaction parameters in the ternary system. The 
species A and B are allowed to be the two parts of diblock 
copolymers or just two distinct homopolymers. When the 
C component is chemically identical to the component A 
in the case of diblock copolymers, the ternary system 
reduces to the one studied by Stiihn and Rennie 4. 
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However, our expression for the first cumulant of the 
scattering function, when the A component in the diblock 
copolymers is assumed to be labelled, is somewhat 
different from the one used by Stiihn and Rennie 4. We 
therefore reanalyse their experiment with the theoretical 
results obtained in this paper in detail, and discuss the 
information that can be extracted from spin-echo neutron 
scattering experiments by analysing the first cumulant in 
the high q region. When the matrix C is treated as a 
solvent, we obtain the ternary system studied by 
Benmouna et al. 9 although the RPA may be questionable 
in this limit. 

We present the theoretical results for ternary systems 
and point out the differences between our results and 
those reported earlier. Then we calculate the first 
cumulant explicitly as a function of q in various q regions 
and for different Fiery interaction parameters x. We also 
compare the first cumulant in the high q region to the 
experimental results obtained by Stiihn and Rennie 4, and 
investigate the variation of the decay rates and the 
amplitudes of the modes as a function of q under 
conditions of their experiment. We also present the phase 
diagram for this particular mixture and discuss variation 
of the critical wave number q¢, associated with micro- 
phase separation as a function of the volume fraction of 
the copolymers. 

T H E OR ETIC AL F O U N D A T I O N S  

In incompressible ternary systems the short time be- 
haviour of the scattering intensity from a labelled 
component,  which we denote by A, can be expressed as 5 : 

Saa(q , t )  = al(q)e -~l(q)t + a2(q)e -~2(q)t (1) 

where 21(q) and )]'2(q) a re  obtained by solving the 
quadratic equation 

(f/11 - 2)(~22 - 2 ) -  ~12~21 = 0 (2) 

and the amplitudes of each mode are given byS: 

Saa(q)22(q) - q2kBTmaa 
al(q) = (3a) 

22(q) - 21(q) 

S..(q)2~ (q) - q2kBTm,, 
a2(q) = (3b) 

21(q) -- 22(q) 

In equation (2), f~i(q) denote the elements of the first 
cumulant matrix ~ ( q ) ,  which must be specified to 
determine the decay constants. In equation (3), ma~ is a 
component of the mobility matrix m (q) = [m~(q)]. The 
latter is related to the static structure matrix S ( q ) =  
[Sij(q)] and f~(q) by 

D.(q) = qZkHTm( q)S- ~ ( q) (4) 

Hence, the problem of calculating Sa,(q, t) is reduced to 
the calculation of the mobility matrix re(q) and static 
structure matrix S(q). The RPA enables one to express 
these quantities in terms of the bare system mobility 
matrix m°(q) and bare system static structure matrix 
S°(q), which are approximated by single chain mobilities 
and static structure factors. In the case of a ternary 
mixture of A, B and C, in which component C is assumed 
to be a homopolymer, treated as the matrix and 
eliminated using incompressibility, we obtained ~ the 
matrix elements m~j(q): 

1 1 1 
- + ( 5 a )  

o o o maa maa mbb -4- race 

1 1 1 
- - -  + ( 5 b )  o o 

mbb  m~b maa -~- mee  

- + - -  + ( 5 c )  o o o 
F/lab a mbb  /'?/aambb, ] 

The mobilities mi°i in the bare system are customarily 
calculated by using Rouse dynamics, as 

~ a  ~bb q~c - -  , o o _ , m~,b mcc -- (6) 
maa ~a ~b ~c 

where ~bl is the volume fraction of each component, and 
defined as the ratio of the total number of segments of 
species to the total number of segments in the entire 
system, assuming that the segmental volumes are the 
same. We note that the bare mobilities can be expressed 
in terms of the friction coefficients ~i with different 
proportionality constants from the volume fractions used 
in equation (6), such as the total number of monomers 
in the components. The choice depends on the normal- 
ization used in the definition of the static structure factors. 
Since the first cumulant is expressed as the ratio of the 
mobilities and static structure factors as can be seen in 
equation (4), it is independent of the choice of their 
normalization. In the case of a ternary system consisting 
of copolymers A - B  in the matrix of homopolymers C, 
these volume fractions are expressed as q~a = fa~ b, ~bb = 
(1--fa)q5 and ~bc = ( 1 -  ~b), where 4) is the volume 
fraction of all the segments belonging to the copolymers, 
and fa is the fraction of A segments in copolymer A-B.  
The description of single chain dynamics in the polymer 
mixture by the Rouse model is a simplification suggested 
and employed by de Gennes 12, Pincus 13 and Binder 14, 
which we also adopted in this and our earlier papers 7 
on the dynamics of polymer mixtures. It may be justifiable 
in a mixture of polymers, in which the hydrodynamic 
interactions are fully screened. It is however possible to 
accommodate reptation, by choosing the bare mobilities 
as m°~ = (o,/(,N,, where N, is the number of monomers 
in ~ chain. 

The matrix elements of the structure matrix S(q), 
needed in equation (3), are calculated using the inverse 
Zimm formula in matrix form is : 

S-1 (q) = S°- ' (q)  + v(q) (7) 

where the third component C has already been eliminated 
by using incompressibility constraint so that S(q), S°(q) 
and v(q) in equation (7) are 2 x 2 square matrices. The 
elements of excluded volume matrix v (q) are given TM 16 
by: 

1 
/)aa (q )  --  2x~ (8a) 

S°,(q) 

1 
Vab(q ) --  d- X~b -- X~ -- Kb~ (8b) 

S°~(q) 

1 
/£ab - -  [ W a b  - -  l ( W a a  -Jv Wbb) ' ]  ( 8 C )  

kB Tvs 

and Vbb(q ) is obtained replacing x,¢ by Xbc in equation 
(8a). In equation (8c), v s is the segmental volume, which 
is assumed to be the same for all species, and Wab(q ) 
denotes the Fourier transform of the interaction potential 
per particle of a pair of A and B monomers, and has a 
unit of volume-energy. Hence, x~j are dimensionless, and 
the excluded volume parameters are expressed per unit 
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segmental volume so that they are also dimensionless. 
The normalization of S°¢(q) in equation (8) is such 
that S°~(0)= ~bCN~, where N¢ denotes the number of 
monomers in a matrix chain. These normalizations are 
consistent with the normalization of mobilities intro- 
duced in equation (6). The elements of the static structure 
matrix can be obtained ~'~6 explicitly from equation (7) 
as 

S ( q )  = 

/- o o Ao o o A o _ K ° ~ o S O o A O )  -] 1 (S,aS== + - 2xb~S°~A°)(SabS~ - 

I I 
o o A . . . . .  A o a L ( S . ~ S o ~  - Ka.oSooa )(SbbS¢¢ + -- 2KaeSc°cA°)d 

(9a) 

where 

m = Sa°a + S;b  @ 2S°b + S°¢ -- 2G~(S°.S°¢ + A °) 

-- 2Kbc(S~bS°c + A ° ) -- 2Kab¢(A ° -- SObS°c) 

- /£abc )Scc A (9b) + (4KacKbc 2 o o 

Kab c ~- Kab -- Kac -- Kbc (9C) 

A . . . .  2 (9d) = SaaSbb -- Sab 

In these equations Sa°a (q) and S~, b (q) are the single chain 
static structure factors of A and B components in the 
mixture. In the bulk state they obey Gaussian statistics, 
and are usually represented by the Debye function, in 
which qa << 1 is assumed. Here 'a '  denotes the statistical 
segment length of an A chain. Since Stiihn and Rennie's 
experiment is performed in the high q region, where 
qa ~ 1, we need the full expression of S°a(q) valid for all 
q17: 

S°a = C~aNaP( Na, 0~a) (10a)  

P ( N a , % ) = N a  1 + 2 ( e ~ a - - l ) - i  1 N a a i ~ _ _ e - % ) j j  

(10b) 
qZa2 

~a -- (10C) 
6 

where q~a is the volume fraction of monomers of type A 
and N~ is the number of statistical segments. Note that 
the choice of the normalization used in equation (10a) 
for the static structure factor is consistent with the 
normalization of the mobilities in equation (6). In the 
limit of a ~ 0  and N . ~  ~ ,  keeping Rga----Naa2/6 
constant, P(Na, ~a) reproduces the conventional Debye 
form : 

2 
PD(Xa) = ..2 (Xa-- l + e  -xa) (11)  

x a 

where Xa--Na~ a ---(qRga) 2, and Rg, is the radius of 
gyration of an A chain. The difference between the full 
expression P(N~, ~a) and the Debye form PD(Xa) is that 
the former behaves as 1/N a in the high q region where 
qa >> 1, whereas the latter behaves as 2 I x  a. In the 
intermediate and high q regions where qRg a >> 1, P(N, ,  ~a) 
simplifies to 

P(Na, ~a) = ~1 coth( ~a" ] (12) 
N a \ 2 f l  

The static structure factors Sgb(q ) and S°c(q) are 
obtained from equation (10) by replacing the properties 
of A chains by those of B and C chains. The partial 

structure factors S°ac(q) and S~,~(q) are zero, because C 
chains, which are assumed to be homopolymers, are not 
connected to the A or B chains. The S°b(q) is also zero if 
A and B species are homopolymers, and non-zero when 
they represent two arms of a copolymer. The calculation 
of S°b(q) in the latter case is somewhat complicated, 
though straightforward, when the statistical segment 
lengths of the two arms are not the same. For diblock 
copolymer A-B, it can be calculated as 

S°b = ~X~aa~NaNbPab(Na, Nb, 0(a, ~b) (13a)  

where 

Pab(Na, Nb, ~a, ~b) 

1 e_(~ta+~tb)/2 [ (1 -- e-~taNa)(1 -- e--~tbNb)] 

- N a N b  ( i 2 ~ i | _ e _ % )  J (13b)  

In the small and intermediate q regions defined above, 
equation (13b) simplifies to 

Pab(Xa, X b ) = [  (1 - -e -X")(1-  e-Xb)] (14) 
XaX b 

whereas in the intermediate and high q regions it becomes 

1 
Pab(Na,  Nb, ~a, ~b) = (15) 

4 s i n h ( 2 a ) s i n h ( 2  b )  

Finally, when the segment lengths a and b of the A and 
B chains are the same, i.e. ~a = ~b = ~, equation (13b) 
simplifies to 

Pab(Na ' Nb, ~) = 1 - ~ ( N a + N b )  2 P [ ( N a  + Nb) ,  ~]  
2 [ N a N  b 

N, 
P(Na, o~) --  N b  t --N~ ~ P ( N b , ~  )_ (16) 

In the intermediate and small q regions, P(Nj,  o~), j = a 
or b, on the right-hand side of equation (16) can be 
replaced by the Debye form, and the conventional 
expression of S°b(q) in terms of the Debye forms for the 
full chain and the two parts of the diblock copolymer is 
recaptured. Detailed calculation of Pab for multiblock 
copolymers having different architecture can be found in 
reference 18. We presented the generalized form in 
equation (13b) for the sake of completeness to include 
the case of copolymers with different segment lengths. In 
the application of these theoretical results to the interpret- 
ation of Stiihn and Rennie's experiment, we shall assume 
that the statistical segment length of polystyrene and 
polyisoprene in copolymers are the same, and use 
equation (16) in equation (13a) to calculate S°b(q). 

We now have the complete set of equations for the 
interpretation of dynamic scattering experiments on 
arbitrary ternary mixtures of homopolymers A and B, or 
diblock copolymers A-B, in a matrix of homopolymers 
C. They are simplified considerably under the conditions 
of the experiments by Stfihn and Rennie, in which the 
ternary system consisted of diblock copolymer of proton- 
ated polyisoprene (A) and deuterated polystyrene (B) in 
the matrix of deuterated polyisoprene (C). Since the 
scattering lengths of deuterated polyisoprene and deuter- 
ated polystyrene are the same, the scattering is only from 
protonated polyisoprene, which constitutes the labelled 
component A. Furthermore, the interaction parameters 
between B-C and B-A components are taken to be the 

POLYMER, 1992, Volume33, Number6 1129 



Dynamic scattering experiments: M. Tombakoglu and A. Z. Akcasu 

same, assuming that the deuteration does not change the 
interaction between these species. In this case we have 
only one x parameter, namely x = x~b = Xb,, and x~¢ = 0, 
as one can see from equation (8c) with Wbc = Wab, 
Wac = Wan = Wcc. With these identifications the static 
structure factors in the interacting system can be obtained 
from equation (9) as: 

S°aS° c "Jr- A ° - -  2xS%A ° 
S.,(q) = 

s°. + S~B + 2S% + S°c -- 2~(S~bS% + A °) 
(17a) 

S~,bS°o + A ° 
Sbb(q  ) = 

o o O S°a -'[- Sbb -~ 2Sa°b -I- Sc°c - -  2tC(SbbScc -k A ° ) 

(17b) 

s%soc- A o 
Sab(q )=Sba(q )  = 

0 0 0 0 0 0 o Saa "t- Sbb -I- 2Sab q- Sec - -  2tc(SbbScc Jr- A ) 

(17c) 
o2 where A ° = S°aaS~,b - S,b, as defined earlier in equation 

(9d). We remark here that the form of Sbb(q  ) given in 
equation (17a) can also be obtained directly from a 
formula of the static structure factor for diblock co- 
polymers in the melt [equation (32) in ref. 7], which we 
reproduce here 

SAA(q)  

1 1 

SBB(q) SAB(q) 

= MT[ S~'A S~e] -~M -- 2x 
LS~A S~.J 

(18) 

where M -- col[ 1, - 1 ]. When the matrix component is 
the same species as one of the two species in the 
copolymers, i.e. A = C, we can treat all the A monomers 
as one component, and regard the ternary system as a 
binary incompressible mixture of A and B with densities 
(Pa + Pc) and Pb. This procedure is tantamount to 
identifying in equation (18), S~A(q ) = S°a(q) + S°c(q), 
S°Aa(q)----S°b(q) and S~B(q)= S~,b(q). The S°¢(q)= 0 
and S~c (q) = 0 because there is no connectivity between 
the matrix homopolymers A and the A polymers in the 
copolymers. One can verify that equation (17b) is indeed 
obtained from equation (18) with this identification. 
However, this procedure cannot be used to obtain the 
expression of S~,(q) given in equation (17a), because 
S~a(q) is the structure factor associated with the A 
segments only in the copolymers. The reduction procedure 
described here in the case of a ternary system can also 
be implemented in mixtures with an arbitrary number of 
components provided they are all formed by two chemical 
species (see Appendix). 

It seems that the above procedure was used by Stfihn 
and Rennie to obtain Sa,(q) and Sbb(q), starting from 
equation (18). However, the bare structure factors given 
by equation (10) in this reference reproduces Sbb(q) in 
the interacting system [equation (1) in ref. 4], which 
seems to be taken as Sa~(q ). Since the first cumulant is 
being calculated for the labelled A component, this 
interchange leads to an inconsistent result. In the high q 
region considered by these authors, however, this difference 
makes little quantitative difference. 

FIRST CUMULANT 

The dynamic scattering experiments are often interpreted 
in terms of the first cumulant, Faa(q), of the observed 

scattering function S~a(q, t), rather than using its full 
expression given in equation (1). The first cumulant is 
defined by 

Faa(q) = __limdSaa(q,t) 1 (19) 
,~o dt S.,(q) 

Using equation (1) one obtains 

raa(q) = q2ksT maa (20) 
Saa(q) 

where rnaa and S,a(q) are given by equations (5a) and 
(17a). Since the first cumulant of S,a (q, t) was measured 
by Stfihn and Rennie 4 in their spin-echo neutron 
scattering experiment, we calculate Faa (q) explicitly for 
the mixture of A-B  copolymers in the matrix of C = A 
homopolymers. Using equation (5a) for maa and equation 
(17a) for Sa, (q), we find explicitly 

O O O 

Faa(q ) = q2kaT maa(mbb + mcc) 
(m°a + m~,b + me°c) 

o 0 Sa°a + S~b -t'- 2S°b q- S°c - -  2x(SbbScc + A °) 
X 

(S°aSc°c q- a ° _ 2 x S % A  o) 

(21a) 

o = (1 - qS)/(a and where, now mcc 

S%(q) = (1 - cb )NcP(N c, ~ )  

If the B monomers in the copolymers were labelled, the 
first cumulant of scattering intensity, Sbb(q, t), would be 
written by using equations (17b) and (5b) as follows: 

O O o 

Fbb(q) = q2kB T rnbb(maa + m~c) 
(m°. + m~,b + re°c) 

o 0 S°a -1- S~b "q- 2S% + S% - 2x(SbbSc¢ + A °) 
X 

( s~bs°o + A o) 

(21b) 

We included this case for completeness, as well as for 
future discussions, even though we only need equation 
(21a) to interpret the experimental results by Stfihn and 
Rennie 4. Both equations are valid for all values of q, 
including the intermediate and high q regions, where 
Stfihn and Rennie's experiment was performed. Since the 
objective of this paper is broader than just interpreting 
this particular experiment, we shall digress here to study 
the variation of Faa (q) and Fbb (q) with q in all q regions, 
and investigate the influence of the interaction parameter 
on its behaviour. 

SMALL q REGION:  qRg << 1 

In this q region, the bare system static structure factors 
can be approximated by 

S°a(q) = 49Nf2(1 - q2R2,a/3 ) (22a) 

S~,b(q) = ~bN(1 - f ~ ) z ( 1  - q2R2gb/3) (22b) 

S°b(q) = q~Nfa(1 -- fa)[1 -- q2(R2 a + R2b)/2](22C) 

S°c(q) = (1 -- ~b)Nc(1 - qZR]¢/3) (22d) 

Substitution of these expressions into the expression of 
Saa(q) given in equation (17a) and ignoring terms of the 
order of q4 or higher, one obtains the expression for 
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Sa,(q) in this q range" 

Saa(q) = Saa(0)/( 1 + q2~2) 

where the correlation length ~c is found to be 

(23a) 

= 

6 ( 1  - f ~ ) ( a :  m . . . .  _ /~)1/2 

(f~+(1--f.)(2fa--3) +f. 20(1-fD 2 )1/2 

+ 2KN(1--f )2[ 4~b(1 --L)~-]: + 4 + l?l-- 84[~N(1 - f.)] ~' 
\ " k (1-~b)f¢ " _1 

(23b) 

where fc = Nc/N denotes the size of the A homopolymer 
relative to the size of the copolymers and f~ -- Na/N 
where N is the total number of segments in a copolymer 
molecule. The term xmacro denotes the critical value of 
the ~ parameter where the macrophase separation sets 
in, and is defined as 

1 I(91N 1 1 (24) tom ... .  2(1 fa)  2 + ( 1 - - ~ b ) U  c 

Since the bare system mobilities in equation (21a) are 
independent of q, the small q limit of Faa (q) can be written 
a s  

- (gf ) {1 - f a V  Faa(q) 2q2 kB T I I 
Ca \ f a J  

x (/era . . . . .  K)(I  + q2~2) (25) 

where ~a is an effective friction coefficient defined as 

1 1 1 ~cCb + ~;bt, C. 
- ( 2 6 )  

~a Ca ( l  - -  (9a) | - -  (#b)Cb -~- (9bCa 

where (9~ = ~bfa, (gb = ~ b ( 1 - f a )  and (9c = 1 - ( 9 .  The 
small q limit of F~a(q)/q 2 defines the short time diffusion 
coefficient of the A chains, which follows from equation 
(25) as 

Dsh=2kRT(afa( l - - (gfa) f l ; /a)  2 Ca (K.m . . . . .  K)  ( 2 7 )  

It is interesting to demonstrate how the above general 
results for a ternary mixture reproduce, as special cases, 
some known results in binary mixtures. The limit of 
f~ --* 1 corresponds to an incompressible binary mixture 
of A molecules with different molecular weights, because 
fa = 1 implies that the B component in diblock copoly- 
mers is absent. Since the remaining components consist 
of molecules of the same species, the K parameter is zero, 
assuming that the protonated and deuterated species do 
not interact. Therefore equation (25) reduces to 

q2k~T[(1-(9) + (9] 
F a a ( q )  - -  Ca Na  ~ [1  + q 2 ¢ 2 ]  (28a) 

where the correlation length ~c is simplified as 

. . . .  (28b) 
~8L Na 

The short time diffusion coefficient in equation (27) in 
this particular mixture becomes 

D~h=kBT~(1--(9) (9] (29) 
• C, L Na +N-; 

which is the interdiffusion coefficient for this binary 
system consisting of molecules of the same species 
with different molecular weights. When ~b ~ 0 (or q~ ~ 1 ), 
equation (29) reduces to the self diffusion coefficient of 
an A molecule, i.e. D s = kRT/CaNa . 

If we let fa ~ 0 in equation (21b), we obtain the first 
cumulant in an interacting binary mixture of homo- 
polymers A and B discussed by de Gennes 19, Binder 14 
and Akcasu et al. 7. 

q2kBT m a c r o  

F b b ( q  ) = 2 ~  (K c - 

where 

x)(1 +q2¢~) (30a) 

a 2 1 
~ 2 _ (30b) c - -  36 ~b(l - (9)(re m . . . .  - -  K') 

: ( l  - -  (]~)Cb 71- (9Ca ( 3 0 C )  

and x~ . . . .  is given by equation (24) with fa = 0. Of 
course, the results of the limit of fa  ~ 1 discussed above 
are obtained from these equations by letting Ca ~" Cb and 
x = 0. The short time diffusion coefficient for this 
particular case is obtained as 

2kBT 
O~ h _ (h.m . . . .  - -  •) (31) 

which corresponds to the interdiffusion coefficient in an 
interacting incompressible binary homopolymer mixture. 

Another limiting case, which corresponds to a copoly- 
mer melt, is obtained by taking the limit of (9 ~ 1. The 
resulting equations reproduce those obtained by Akcasu 
et al. 7 directly in copolymer melts. The first cumulant 
follows from equation (21a) or equation (21b) as 

q2kBTf,(1--fa)[ 6 --2rC] 
raa(q) = C Nq2(R2a+ Rg2b) 

(32a) 

= (1 -- fa)Ca q- fa~b (32b) 

One can verify that Fa,(q ) = F b b ( q  ). It is observed that 
F~,(q) does not vanish as q--* 0, but rather tends to a 
finite relaxation frequency, indicating that initial relax- 
ation of long wave density inhomogeneities is due to local 
motions of the two arms of the copolymer, and becomes 
independent of q whenever qRg << 1 (ref. 7). In equation 
(32a), the first term in parentheses is always much larger 
than the second term 2KN in the small q region. It is 
kept only to show that the interactions tend to decrease 
the relaxation frequency. Indeed, Faa(q ) vanishes when 

micro tc becomes equal to K c , at the critical value qc, which 
corresponds to the beginning of the microphase separ- 
ation. Since qcRgT ~ 2, equation (32a) is not applicable 

micro Y'.a(q) passes through a in this q range. For x < Xc , 
minimum, and begins to increase for larger values of q 
towards the intermediate q values. Its behaviour in this 
asymptotic q region is discussed below. 

INTERMEDIATE q REGION : qa << 1, qRg >> 1 

In this q region, the bare system static structure factors 
can be approximated by 

SOn(q) 2 2 2 = 2(gNfa/q Rg a (33a) 

S~,b(q) = 2(9N(1 -Ja)2/q2RZg b (33b) 

S°u(q) (9Nf,(1 4 2 2 = --fa)/q RgaRgb (33c) 
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S°~c(q) = 2(1 - 4)Nc/qER2 c (33d) 

The first cumulant Fa,(q ) in the intermediate q region 
can be written as 

Faa (q) kaT q*a 2 
- -  ~ -  M 

(a  12 

4 : :  ') 
--2/C{ l~ - - -~214 (1 - -4 ) (1 - - f a )+42 fa (  1 - f a ) ] } }  

( 1 - - 4 )  + 4 ( 1 - - f a ) a  2 2 K F 1 2 4 ( 1 - - ~ ) ( 1 Z f a ) l  

(1 - -4 fa )  ( 1 - 4 f a )  b 2 I_ qeb~(1-4L) 1 
(34a) 

When segment lengths of A and B polymers are equal 
to each other, equation (34a) simplifies to 

kB T q4 a2 
Faa(q) - - -  - -  

( a  12 

{,2 } 1 - 2~ ~ [4(1 - 4,)(1 - L )  + Cfa(1 - - fa) ]  
x 

12 4 ( 1 - 4 ) ( 1 - f ~ ) ]  
1-2  qG2 i--4fa 

(34b) 

where ~a is given in equation (26). The usual q4 behaviour 
of the first cumulant in the intermediate q region, which 
is a characteristic of Rouse dynamics, is recaptured in 
equation (34) with an additional factor, involving the 
interaction parameter ~. When the B monomers are 
labelled, one measures the first cumulant Fbb(q ) of 
Sbb(q, t). The asymptotic behaviour of Fbb(q ) follows 
from equation (21b) as 

F b b ( q )  = kBT_ qga2 
(b 12 

4xNa fa)}  
x (1  -- q~R~g2 [4 (1  - 4 )  + 4Zfa](1 -- 

(35) 

where (b is the effective friction coefficient for B 
monomers and defined by 

(b = (1 - 4b)(b + 4bffa (36) 

where 4b = q~ (1 -- fa)" The cases of binary homopolymer 
blends and copolymer melts in the intermediate q region 
are obtained as follows. In the limiting case, fa ~ 1, one 
obtains the incompressible mixture of A-type homo- 
polymers with different molecular weights: 

Faa(q)=q2kBT(q2a2~ 
~-~ \ 12- /  (37) 

Since the motion of the subchains with end-to-end 
distances much smaller than the full chain size, and larger 
than the segmental length, are probed in the intermediate 
q region, all the A chains with different molecular weights 
have identical first cumulants. Therefore, equation (37) 
is identical to the first cumulant of a single chain in Rouse 
dynamics. If we let f ,  --* 0 in equation (35), we obtain 
the first cumulant in an interacting binary mixture of 
homopolymers C = A and B in the intermediate q region 

as  

kBTqaa211 4xN ~ b ( 1 - ~ ) 1  (38a) 
Fbb(q)--  ~b 12 q2Rg2 

where N = N b + N c and R2r = R2b + R2c. Both in 
equations (35) and (38a), the second terms in parentheses 
are smaller than unity in the intermediate q region 
because KN has to be less than its critical value in the 
one phase region and 2 2 q Rg T >> 1. To clarify this point in 
a simpler case we rewrite equation (38a) for a symmetric 
binary blend of B and C homopolymers with N c = N b = 
N/2, by eliminating 4(1 - 4)  in favour of K m .... , as 

4 z (  x 4 )  kaTq RgT 1 -- -- (38b) 
F b b ( q ) -  (b  2N ~c c q Rg T ~- macro 2 2 

where xmacro is defined in equation (24). Since, in the one 
phase, x /x  m .... < l, the second term is smaller than unity 
in the intermediate q region. We kept this term only to 
show the trend of the influence of the interactions on the 
first cumulant. The limit of q~ -~ 1 corresponds to the 
melt of copolymer A-B.  From equations (34b) and (35) 
we obtain : 

kBT q4R2 T 
2N 

4xN ] 
x 1 ~ f~(1 - - fa)  

q RgT 

r a a ( q  ) - -  

(39) 

where N = N b + Na, R, 2 = R2b + R2, and ( is given by 
equation (32b). In both equations (38b) and (39), the 
q4 dependence prevails. 

LARGE q RE GION:  qa >> 1 

In order to obtain the large q behaviour of the first 
cumulant, where the segmental motion is dominant, one 
has to use the full expression of the static structure factors, 
as we pointed out earlier. For qa >> 1, the bare system 
static structure factors can be approximated by 

S°.(q) = 4fa (40a) 

S~b(q) = ~(1 - - fa)  (40b) 

S ° b ( q )  = 0 (40c) 

S°~c(q) = (1 -- 4)  (40d) 

Hence, the first cumulant in this q region is found from 
equation (21a) as 

qZkBT 
ra.(q ) - 

(a 
1 - 2x[~(1  - 4)(1 - - f , )  + 42f,(1 - f ~ ) ]  

× 

1 - 2 x l q S ( l ~ 4 ) ( 1 - f " ) ] - 4 f . )  

(41) 

which corresponds to segmental diffusion. From this 
result, we again obtain the case of a binary mixture of 
homopolymers of kind A, with two different molecular 
weights, by taking the limit as fa ~ 1 : 

]- 'aa(q) = q2 kaT (42) 
(a 

The case of copolymer melts follow from equation (41) 
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with ~b ~ 1 as 

F a a ( q )  = q2 kB=T (43) 
C 

where ( is given by equation (32b). Since in this case, 
the diffusion of two different species is being observed, 
the friction coefficient in equation (43) is a weighted 
average of the individual friction coefficients Ca and Cb as 
(1 -- fa)Ca + f ,  fb' It is to be noted that this superposition 
of the friction coefficients is consistent with the inverse 
superposition rule of mobilities given in equation (5). 
The homopolymer case given in equation (42) is obtained 
from equation (43) with (a = (b. 

INTERPRETATION OF STOHN AND 
RENNIE'S EXPERIMENT 

The dynamic RPA predicts the variation of the first 
cumulant of the dynamic scattering function of a labelled 
component in a multicomponent polymer blend as a 
function of q, K, volume fractions of components and 
scattering lengths of species. By comparing the theoretical 
expression of the first cumulant with the experimental 
data, one can infer the numerical values of various 
physical parameters, such as the segment lengths, Flory 
interaction parameters, friction coefficients and number 
of segments in chains. Since the number of physical 
parameters to be inferred from the data is large, both 
static and dynamic scattering experiments on the same 
system are desirable. From static scattering experi- 
ments 2°'21 one can extract information about the Flory 
interaction parameter and radius of gyration of polymer 
molecules. Interpretation of dynamic scattering experi- 
ments in the high q region in terms of the first cumulant, 
on the other hand, yields the segment lengths and effective 
friction coefficients. As an example, we propose to 
interpret Stfihn and Rennie's experimental data we 
described earlier. In this experiment, the first cumulant 
in the high q region was measured by quasi elastic neutron 

Table 1 Properties of polymer species 

Mw Mw/M. f .  

p-PI /d-PS 32 400 1.04 0.5 
d-P! 80 000 1.03 

C (nm) a R s (nm) b 
p-Pl 0.0348 ~ 3.8 
d-PS 0.0286 ~4.0 
d-PI 0.0348 ~9.7 

aData obtained from reference 24 
bRg = C(MN) 1/2 

Table 2 Measured values of F.a(q) for different q values and values 
of ~¢ 

T = 438 K T = 453 K T =  473 K 
q F~.(q) ( × 10 -6) F . . (q)  ( x 10 6) F . . (q ) (  x 10 -6)  
(nm -1)  (s -1)  (s -1)  ( s - l l  

0.74 - - 5.9 (1.4) 
0.87 1.9 (0.9) 6.2 (1.3) 15.8 (1.7) 
0.99 8.1 (1.5) 14.4 (1.7) 29.8 (2.1) 
1.24 25.1 (3.0) 40.9 (3.3) 96.1 (10.5) 
1.48 41.1 (6.9) 60.0 (6.6) 178.1 (16.0) 
~c 0.065 0.055 0.045 

Table 3 Effective friction coefficients ((a)" and segment lengths (a) 
at various temperatures 

T (K) 10-6(a/a 2 ( g c m - 2 s  - l )  107(. (gs  -1) a ( n m )  

438 6.6 2.57 1.81 
453 3.8 1.48 2.52 
473 1.9 0.74 0.51 

"Friction coefficients calculated using a = 1.6 nm 

scattering at three temperatures and five different scatter- 
ing angles, far from the spinodal line. In Table 1, we 
reproduce the molecular weight and the radius of 
gyration of the styrene-isoprene diblock copolymers and 
the deuterated polyisoprene used. In Table 2, we present 
the measured values of the first cumulant Faa(q ) of the 
dynamic scattering function Saa(q, t) of the protonated 
polyisoprene for five different q values and ~c values at 
three different temperatures. The ~c value is obtained from 
Figure 3 of reference 4. 

In order to analyse the experimental data, we use 
equation (21a) with the full description of bare system 
static structure factors valid for all values of q. Since the 
radius of gyration of the chains and the volume fraction 
of the components are already specified, the only 
remaining unknowns in equation (21a) are the statistical 
segment length of the chains, which we assume to be the 
same for polyisoprene and polystyrene, and the effective 
friction coefficient. The Levenberg Marquart 21'23 non- 
linear curve fitting technique is used to calculate these 
two parameters by fitting equation (21a) to the data 
reproduced in Table 2. The experimental points in the 
region of segmental diffusion, do not quite level off, and 
have larger standard deviations compared to those in 
the intermediate q region. Therefore, the curve fitting 
algorithm with weighting of the data with the error bars 
given in Table 2 has yielded only the ratios ~a/a 2 
unambiguously at all three temperatures, but yielded 
unreliable values (too small) for segment length. This is 
understandable because when the data is weighted with 
the error bars, the information about the segmental 
diffusion contained in the last two data points is virtually 
lost. In order to obtain the segment length, we therefore 
used data with the same importance, i.e. without 
weighting with the error bars. The curve fitting produced 
an averaged segment length a = 1.6 (0.8)nm (Table 3). 
The effective friction coefficients (, were obtained by 
using the same segment length (a = 1.6 nm) at the three 
temperatures. In Figures la and b, we present the 
theoretically calculated first cumulant Faa(q ) as a 
function of q (solid lines) and the experimental data 
(symbols) to give an idea about the quality of the 
agreement between experimental data and theoretical 
results with weighting of the data with experimental error 
bars (Figure la) and without weighting (Figure lb). To 
obtain the segment length and effective friction coefficient 
more accurately, one needs more data points with better 
accuracy in the segmental diffusion region. The segment 
length [a = 1.6 (0.8)nm] we have obtained by using 
only four data points is still reasonable, particularly 
considering the fact that we had to assume the segment 
lengths of polystyrene and polyisoprene to be the same. 
These results demonstrate at least the potential of 
spin-echo neutron scattering experiments to measure the 
statistical segment length and the effective friction 
coefficients of chains. 
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Figure I Variation of reduced first cumulant F~(q) /q  2 as a function 
of wave number q at three temperatures for the system of diblock 
copolymers p-PI/d-PS in the matrix of homopolymers d-PI described 
in Table 1. The symbols show the experimental data and lines show 
the theoretical fit [equation (21a)], with weighting of the data (a) with 
the experimental error bars given in Table 2 and without weighting 
(b). Temperature (K): ( ) 4 3 8 ; ( - -  ) 4 5 3 ; ( - - - ) 4 7 3 ; ( 0 ) 4 3 8 ;  
( A )  453;  ( ~ )  473 

In Figure 2, we plotted the variation of the first 
cumulant F,~(q) as a function of q over the entire q 
region. As one can see from the graph, the behaviour of 
the first cumulant depends on the volume fraction of the 
copolymers and x. In general, for a small volume fraction 
of copolymers, less than the fraction q~¢, which we define 
presently, we observe the typical behaviour for homo- 
polymer mixtures, in which the relaxation frequency 
Faa(q ) decreases with increasing ~c at q = 0. For large 

volume fraction ofcopolymers (q~ > ~b c), we observe that 
Faa(q ) tends to a minimum at qc (also to be defined 
below), rather than at q = 0. This behaviour is character- 
istic of copolymer melts as discussed previously by 
Akcasu et al. 7. For larger values of q > qc, Faa(q) 
displays, at both volume fractions, first a q4 power law 
behaviour in the intermediate q region, and then tends 
into the high q region, where the segmental diffusion 
dominates the relaxation of the dynamic scattering 
function. The various asymptotic regions discussed 
analytically earlier, and the non-asymptotic transition 
regions between them, are clearly discernable in Figure 2. 

In order to better understand the observed behaviour 
of the first cumulant, as well as the variation of the 
relaxation frequencies and amplitudes of the modes with 
q, we must first digress and discuss the phase diagram of 
ternary polymer mixtures consisting of A - B  copolymers 
and A homopolymers. 

STABILITY CRITERIA FOR 
PHASE SEPARATION 

It has been shown that z4 the mechanism and kinetics of 
phase transition from the disordered to the ordered state 
in the case of a ternary mixture of copolymers A - B  and 
homopolymers A, are different than those in binary 
homopolymer blends and copolymer blends. In the case 
of binary homopolymer blends one observes macrophase 
separation at q = 0, whereas one observes microphase 
separation at finite q = qc, due to chemical connectivity 
in the case of copolymer blends. In ternary copolymer-  
homopolymer mixtures, one can have both macro and 
microphase separation depending on the volume fraction 
~b of the copolymers, and the molecular weights of the 
species. From equation (17), one obtains the critical 

lO 0 

- ~ , . 2  

1~ 1 

/ 

/ 

/ 

J 
i 

10 . . . . . . . .  n . . . . . . . .  I . . . . . . . .  I . . ,H .d  . . . . . . . .  r , ....... I . , . . . ,  

1 ( ) '  10 3 1#  2 I 0  1 1~ 101 102 10 
2 2 

q RgT 

Figure 2 Theoretical variation of the normalized first cumulant 
F. . (q) / (q2k .T/ ( . ) ,  [equation (21a)], as a function of the wave number 
q at two different volume fractions of copolymers, for the ternary 
mixture of copolymers A-B  in the matrix of homopolymers C = A 
with number of segments N. = 34, N b = 38, Nc = 221 and segment 

K=0.5~o , ( - - - - ) q ~ = 0 . l ,  length a = 1.6 n m :  ( ) q5 = 0.95, m i  . . . .  

x = 0.5K~ . . . .  
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Figure 3 Phase diagram showing the stability limits for macro- and 
microphase separation as a function of the volume fraction ofcopolymer 
with N a = N b = 24, Nc = 104, and a = 2.0 nm 

value K~ of the interaction parameter for macro and 
microphase transition, by setting the denominators 
equal to zero, as follows: 

2xm . . . .  : S°a + S~b + 2Sa°b -F Sc°e ( 4 4 a )  
o o A o SbbScc + q = o 

2t¢ mi~r° = Sa°a + S~'b + 2S°b + S°c (44b) 
o o a o 

S b b S c c  ' ~  q = q c  

In the case of macrophase separation, the minimum value 
of the interaction parameter, at which the denominator 
of Su(q) in equation (17) vanishes, occurs at q = 0, 
whereas it occurs at a finite q = q~ in the case of 
microphase separation. The value of q~ is, therefore, 
obtained by finding the minimum of the right-hand side 
of equation (44b) as a function of q. This procedure also 
yields the critical value, ~b~, of the volume fraction by 
evaluating the derivative of the right-hand side of 
equation (44a) or (44b) at q = 0 because at ~bc, qc = 0. 
Substituting the small q limits of the bare system static 
structure factors, given in equation (22), into equation 
(44), we calculate the critical volume fraction ~b¢ as 

f~  (1 + 2f~)f~ 

4H 4fa 
-t'- /[f~C2 2 (1 "t'- 2Sa)Sc] 2 Sc2(1--Sa) 

V L 4 f  a 4J~a J + 2 f ~  
4)~ = (45) 

f ~  (1 + 2fa)f~ 
1 +  

4 f .  ~ 4fo 

+ 1[ ]2  
X/ L 4f a 4f, J 2f 2a 

At q~¢, the t% values calculated from equation (44) for 
macro and microphase separation become identical. 

The variation of x¢ with the volume fraction of 
copolymers is presented in Figure 3. One observes that 

macrophase separation occurs when q$ < ~bc, and micro- 
phase separation occurs when q$ > 4~c. In the latter case, 
the interaction between the two arms of diblock copoly- 
mers is dominant, and hence the mixture behaves as a 
copolymer melt. In Figure 4, we plotted 4be as a function of 
fa : Na /  ( Na --k N b )  fo r  t h r e e  va lues  o f f ~  = N c /  ( N a + Nb) .  
One observes that q~c decreases at a fixed fa, when the 
degree of polymerization N~ of homopolymers A is 
decreased. In other words, the microphase separation 
takes place first at a fixed ~b, when the relative size f~ of 
the matrix homopolymers relative to the size of copoly- 
mers is reduced sufficiently. 

The variation of qc with (~ of the copolymer for three 
different sizes of the matrix homopolymers is presented 
in Figure 5. When q5 approaches unity we recover earlier 
copolymer melt result 7'25. The value of q¢ is identically 
zero for all ~b < ~b~, because at these volume fractions 
only macrophase separation is possible. It is also 
interesting to observe that q¢ decreases from its value 
qcRgT ~ 1.947 to zero, implying an increase in the 
effective size of the A arm of the diblock copolymers, 
when the size of the matrix C = A homopolymers is 
increased. 

VARIATION OF THE DECAY RATES OF 
THE MODES WITH q 

It is also interesting to investigate the variation of the 
relaxation frequencies 2 t (q) and 2 2(q), and the ampli- 
tudes a t (q) and a2(q) of the modes as a function of q, 
because they are experimentally measurable quantities. 
The decay rates characterize the time evolution of the 
dynamic scattering function in a ternary polymer blend 
in the one phase region. In this section, we explicitly 
calculate the short time decay rates by adopting Rouse 
dynamics to describe the bare system in the ternary 
polymer mixture studied by Stiihn and Rennie. From 

o, \ \ ' - ,  

0.2 

0 . 0  , I , 

0.0 0.2 0.4 0.6 0.8 1.0 

fa - Na 
(Na+N b) 

F i g u r e  4 Theoretical variation of the critical volume fraction q5 c of 
copolyrners as a function of fa = N./(Na + Nb) for three different 
va lueso f fc[=(Nc/Na+Nb)] :  ( ) 0 . 5 ; ( - -  ) 1 . 0 ; ( - - - ) 1 . 5  
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Figure 6 Theoretical variation of the normalized decay rates as a 
function of the wave number q for the ternary system of copolymers 
A-B in the matrix of homopolymers C = A characterized by N. = 34, 
Nh = 38, N, = 221,q~ = 0.07, a = 1.6 nm and ~c = 0.045. ( )21(q);  
( - - - - )  22(q); ( - - - )  Fa.(q) 

equation (2) one obtains 

21(q) = fl.v + x/~2v -IgZl 

22(q) = nay -- x/ha 2 - - t ~  

where f~.v = (f~11 + f~22)/2 and 

I n l  = ( n l , n 2 2  - n J ~ 2 1 )  

By using equation (4), we calculate 

q2kaT 
~'~av - -  - -  ( maaS~bS°cc + mbbS°aS°e¢ + mona ° 

2AoSOo 

- -  2mabS°eS°ab - -  2XmbbS°~A °) (46a) 

I~'~[ ( q 2 k B T ) 2  (maamb b 2 
--  _ mab ) Aosoc 

o o X ['Sa°a + S~b -1- 2S°ab + S°¢ -- 2x(SbbSo¢ + A°)] 
(46b) 

where the m o values are given by equation (5) and 
o __ o o 02  A - - S a a S b b -  S u b .  In Figure 6, the normalized decay 

2 rates are plotted as a function of q 2 ( R 2  a + Rgb). In the 
numerical calculations using equation (44), we assumed 
that the friction coefficients of A and B parts of 
copolymers and homopolymers A are the same. We note 
that we did not have to introduce this assumption in the 
calculation of the first cumulant from equation (21), 
because the friction coefficients can be lumped into a 
single effective friction coefficient, as indicated by equation 
(26). In the small q region one observes very different 
behaviour for 21 (q) and ~'2 (q). The relaxation frequency 
of the mode associated with the relative motion of the 
two arms of copolymers, which we choose to be the first 
mode, remains finite as q ~ 0, and hence 21 (q)/q2 tends 
to infinity in the small q limit. However, the amplitude 
of this mode vanishes in this limit, as we discuss below. 
The other mode describes the interdiffusion of the 
homopolymers and the copolymer molecules, and hence 
vanishes as  q2 as q ~ 0. In the intermediate and high q 
regions, both decay rates have the same qualitative 
behaviour, which is similar to that of the first cumulant. 
This is expected because for such large values of q, only 
the internal motions of the chains are probed. 

The amplitudes of the modes depend on the scattering 
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Figure 7 Variation of the amplitudes of the exponential decay modes 
and partial structure factor as a function of the wave number q for the 
sameternarysys temdescr ibedinFigure6. (  ) a l ( q ) ; ( - - - - ) a 2 ( q ) ;  
( - - - )  Sa.(q) = al (q) + a2(q) 
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lengths of each species. In the case where the A part of 
the diblock copolymer is labelled, one can calculate the 
amplitudes by using equations (3a) and (3b). In Figure 7, 
we plotted both the amplitudes and the partial structure 

2 factor Saa (q) as a function ofq 2 (R, 2 + Rg b ). One observes 
that al(q) vanishes as q ~ 0 ,  and displays a maximum 
at a finite q, which depends on the size, as well as on the 
volume fraction, of the copolymers. On the other hand, 
a2 (q )  approaches Sa~ (q )  as  q ~ 0, which also implies that 
in the small q limit, the decay of S,~(q, t) is dominated 
by the interdiffusion process. 

CONCLUSIONS 

In this paper we have derived, within the framework of 
the RPA, analytical expressions for the relaxation 
frequencies and the amplitudes of the modes as a function 
of q, which are observed in dynamic light or neutron 
scattering experiments on a ternary polymer mixture 
consisting of homopolymers A and B, or diblock 
copolymers A - B  in a matrix of homopolymer C. In 
addition, an expression for the first cumulant of the 
dynamic scattering function of a labelled component is 
obtained for all values of q, including the high q region 
where the segmental diffusion mediates the relaxation of 
the scattering function. With the help of the theoretical 
results presented, interpretation of dynamic scattering 
experiments on ternary mixtures have been reduced in 
any q region to straightforward numerical calculations 
which can be performed perhaps more conveniently in 
matrix form. As an application, we have employed these 
results to interpret the experiment by Stfihn and Rennie 4, 
in which the first cumulant was measured with the 
neutron spin-echo technique in the intermediate and high 
q regions on a mixture consisting of A - B  diblock 
copolymers in a matrix of A homopolymers. Using this 
example, we have demonstrated that one can infer the 
segment length and the effective friction coefficient per 
segment, by comparing the theoretical expression of the 
first cumulant obtained in this paper with the data in 
this q region. We also studied the phase diagram for this 
particular mixture, which can undergo either macro- 
phase or microphase separation depending on the volume 
fraction of diblock copolymers and molecular weights. 
We determined the spinodal line, and calculated the 
variation of qc associated with microphase separation, as 
a function of molecular weights of the species and the 
volume fraction of the copolymers. 
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APPENDIX 

Multicomponent mixtures consisting of two 
chemical species 

We consider an incompressible mixture of N + 1  
components consisting of only two kinds of chemical 
species A and B. One of the A homopolymers is taken 
to be the matrix component designated by C. The 
molecules of the A and B species differ from each other 
only in their sizes. The A and B molecules may be 
connected to each other to form complex molecules as 
copolymers, stars, even large networks, except for the  
component chosen as the matrix. Since the mixture 
consists of only A and B monomers, there is only one 
non-vanishing Flory interaction parameter ~'ab = ~ in the 
system, as can be seen from equation (8c). The purpose 
of this appendix is to show that the description of such 
a mixture can be essentially reduced to the dynamics of 
a binary mixture. 

The incremental number densities of the components 
in the Fourier space are labelled as p j,, where the subscript 
j denotes a molecule belonging to species ~ = A, B. 
Hence, the density vector can be written as an N vector 
P(q) = Col[p1,,  P2a, P3 . . . . . .  PMAa, Plb,  P2b . . . . .  PMBb], 
where M, is the number of molecules in the component 
ct. The density of the matrix component Pc is not included 
in p(q), because it is eliminated using incompressibility 
constraint. The first task is to calculate the N × N static 
structure matrix S (q) = ( p  (q)p* (q) >, using the inverse 
Zimm formula given by equation (7). The reduction to 
a binary mixture becomes possible because the excluded 
volume matrix v(q) in this mixture can be factorized as 
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a product of two rectangular matrices as 

v(q) = UV T (A1) 

where 

UT=[10 1 1 " "  1 1 1 " "  1 l l I (A2)  
0 0 . . .  0 1 1 . . .  1 

V T = 

s°o sL sL s°o sL s ° , 
0 0 . . .  0 - 2 K  - 2 x  . . .  -2~¢ - 2 r J  

(A3) 

Because of this special form of v (q), equation (7) can be 
inverted by using the Sherman-Morr ison-Woodbury 26 
formula as 

S(q) = S°(q) -- S°(q)U[I  + vTS°(q)U]-  1VTS°(q) 

(A4) 

The intensity of the scattered beam is in general given 
by I(q) = aZS(q)a, where the components of a denote 
the contrast factors relative to the matrix. Here, we allow 
the monomers in different components to have different 
scattering lengths. If the scattering lengths of all the 
monomers of species A and B are the same, and denoted 
by ' a '  and 'b',  but still allowing a different scattering 
length 'c '  for the monomers in the matrix, the intensity 
can be simplified as 

I(q) = (a - -  c)2Saa(q ) + (b - -  c ) 2 S b b ( q )  

+ 2(a - c ) ( b -  c)S,b(q) (A5) 

where S,p(q)= ( p , ( q ) p a ( - q ) )  with ~, /3 = a, b, and 
denotes the structure factor in the interacting system for 
the total densities of the components, i.e. 

Ma 
p,(q)  = ~ &.,(q); ~ = a or b (A6a) 

j = l  

and 
M~ 

S~,p(q) = ~ ~ S~,,pk(q) (A6b) 
j = l  k = l  

The expressions of S.jp~(q) = ( p . j ( q )p~ (q ) )  in terms of 
the bare system static structure factors are obtained from 
equation (A4). The results can be written after some 
lengthy calculations as 

S°aS°¢ + a ° _ 2xS°a  o 
S a a ( q  ) = 

S~, + S~, b + 2S°b + S°~ - 2K(S~bS°¢ + A °)  

(A7a) 
o o A o SbbScc -{- 

Sbb (q) = o o o o 
San .+ S~b "+ 2S°b + Sc¢-  21¢(SbbSee + A °)  

(A7b) 

S°bS°c - A o 
S a b ( q  ) = 

S°.. + S~b + 2S~b + S°~ - 2x(S~bS~c + A °) 
(A7c) 

where 

S°t,(q) = ~ S°,p,(q) (A8a) 
j = l  k = l  

A ° = S°aS~,b - S°bS~,~ (A8b) 

Z. Akcasu 

The form of equation (A7) is the same as that of equation 
(17), except for the definitions of S°¢(q). When Ma = 
Mb = 1, they become identical. In equations (A7) and 
(A8), we have not specified the bare system static 
structure factors S°,,p(q) because their form depends on 
the model one adapts for the chain statistics in the bare 
system, as well as on the connectivities among the 
molecules of the components. When the scattering length 
of the matrix is the same as the scattering length of species 
A, i.e. a = c, then the scattering intensity in equation (A5) 
is proportional to Sbb (q). The generalized form of S b b ( q  ) 
in equation (A7b) can also be obtained directly from 
equation (18 ), which is written for a binary incompressible 
mixture by defining the density of one component as 
P~ + Pc, and the other as Pb' 

The first cumulant of the dynamic scattering intensity 
is defined as 

F(q)  = - l i m d I ( q ' t )  1 (A9) 
,~o dt I(q) 

where the dynamic scattering intensity I (q, t) is defined 
by 

l(q, t) = aTS(q, t)a (A10) 

The short time behaviour of the dynamic scattering 
matrix S(q, t) can be expressed in terms of the mobility 
matrix re(q) defined as 

S(q, t) = exp[ -q2kBTm(q)S (q ) - l t ]S (q )  (A l l )  

Hence, using equations (A10) and (A l l )  in equation 
(Ag), one obtains 

2- ~ aTm(q) a 
r ( q )  = q I%.  ~ (g12) 

The components of m(q) are expressed in terms of the 
mobilities in the bare system by equation (5). Since the 
particular mixture considered in this appendix consists 
of only two species A and B, the bare mobilities can be 
expressed in terms of the segmental friction coefficients 
~a and ~b of these species, with considerable simplification. 
The diagonal and off-diagonal elements follow from 
equations (5a) and (5c) as 

_" = a o r b  (A13a) 
k / 

~b=,~bpj (~(b. i # j, Ct = a or b and fl = a or b 

(A13b) 

where th,, is the volume fraction of the i component 
belonging to species '~', a or b, and ~ is the weighted 
average of the friction coefficients, and defined by 

= (t#~ + ~bc)( b + ~b(. (A14a) 

where q~= is the volume fraction of the 
belonging to '~', namely 

monomers 

Met 
~b, = ~, q~,, (A14b) 

j = l  

we note that ~b a does not include the volume fraction ~b c 
of the matrix component. Hence, ~ba + ~b ¢ 1, whereas 
~a+ 4'b+ ~o= 1. 

The expression F(q) simplifies when the scattering 
lengths of all the monomers of species A and B are the 
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same, and denoted by 'a '  and 'b',  but still allowing a 
different scattering length 'c '  for the monomers in the 
matrix: the first cumulant simplified to 

F(q) = q2knT 

(a - -  c )2maa + (b - -  c ) 2 m b b  + 2(a -- c)(b - -  C)mab 
X 

(a - c ) 2 S a a ( q )  + ( b  - c ) 2 S b b ( q )  -}- 2(a - c)(b - C ) S a b ( q  ) 

(A15) 

where S~(q) with ~, fl = a, b is given in equation (A7), 
and m~p is defined as: 

M~ 

m~ = ~ ~ m~jp~ (A16) 
j = l  k=X 

which can be calculated by substituting equation (A13) 
into equation (A16) as: 

(~a( 1 - - q ~ a )  
(A17a) maa --  ~a 

qSb(1 -- qSb) 
(A17b) mbb - -  ~b 

and 

(A17c) t'~a b - -  

where ~a and ~b are given by equations (26) and (36). 
The expression of F(q) in equation (A15) constitutes a 
generalization of equations (21a) and (21b). Indeed, 
when the scattering lengths of the monomers in species 
B and the matrix are the same, i.e. b = c, equation (A15) 
reduces to 

F(q) = q2k, T maa (A18a) 
Saa ( q )  

and when a = c, to 

F(q) = qZkBT mbb (A18b) 
Sbb(q) 

In the special case M, = M b = 1, i.e. for a three- 
component system, equations (A 18a ) and ( A 18b ) become 
identical with equations (21a) and (21b). 
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